欢迎来到沈阳明智线缆制造有限公司!
专业生产高低压电力电缆、屏蔽控制电缆、橡胶软电缆以及耐高温等特种电缆
您所在的位置:首页 > 信息动态  > 电缆知识
电力电缆的试验标准及方法
来源:www.mzxlzz.com 发布时间:2020年07月16日
    电力电缆主要由导电线芯、绝缘层和护套组成,《规程》将电力电缆分成三类,即纸绝缘电力电缆、橡塑绝缘电力电缆(聚氯乙烯绝缘电力电缆、交联聚乙烯绝缘电力电缆、乙丙橡皮绝缘电力电缆)、电容式充油电缆。
      
一、绝缘电阻测量

     测量电力电缆的主绝缘电阻可以检查电缆绝缘是否老化、受潮,以及耐压试验中暴露出来的绝缘缺陷。

     对1000V以下的电缆测量时用1000V绝缘电阻测试仪,对1000V及以上的电缆用2500V绝缘电阻测试仪,对6kV及以上电缆用5000V绝缘电阻测试仪。

     橡塑绝缘电力电缆的绝缘电阻很低时,应用万用表正、反接线分别测屏蔽层对铠装、铠装层对地的直流电阻,以检查它们是否受潮。当绝缘确实受潮时,应安排检修。当电缆埋于地下后,测量钢铠甲对地的绝缘电阻,可检查出外护套有无损伤;同理,测量铜屏蔽层对钢铠甲间的绝缘电阻也可以检查出内护套有无损伤。通过这两项测量可以判断绝缘是否已经受潮。当电缆敷设在电缆沟、隧道支架上时,其外护套的损伤点不在支点处且又未浸泡在水中或置于特别潮湿的环境中,则外护套的操作很难通过测量绝缘电阻来发现,此时测量铜屏蔽层对钢铠甲的绝缘电阻则更为重要。

      电缆终端或套管表面脏污、潮湿对绝缘电阻有较大的影响。除擦拭干净外,还应加屏蔽环,将屏蔽环接到绝缘电阻测试仪的“屏蔽”端子上,当电缆为三芯电缆时,可利用非测量相作为两端屏蔽环的连线。

        (a)单芯电缆;(b)三芯电缆

     当被测电缆较长时,充电电流很大,因而绝缘电阻测试仪开始指示的数值很小,这并不表示绝缘不良,经过较长时间遥测才能得到正确的结果。

      测量中若采用手动绝缘电阻测试仪,则转速不得低于额定转速的80%,且当绝缘电阻测试仪达到额定转速后才能接到被试设备上并记录时间,读取15s和60s的绝缘电阻值。绝缘电阻测试仪停止摇动时,更应进行充分放电,放电时间少不少于2min。
电力电缆
二、直流耐压和泄漏电流试验

1.直流耐压试验

      交流电力电缆之所以用直流来进行工频耐压试验,主要是由于电力电缆具有很大的电容,现场采用大容量试验变压器不现实,所以改为直流耐压试验,以显著减小试验电源的容量。直流耐压试验一般都采用半波整流电路,可采用直流高压发生器进行试验,由于电缆电容量较大,故不用加装滤波电容。对于35kV以上的电缆,试验电源采用倍压整流方式。试验中测量泄漏电流的微安表可接在低电位端,也可接在高电位端。

      通常直流试验所带来的剩余破坏也比交流试验小得多(如交流试验因局部放电、化等所引起的损耗比直流时大)。直流试验没有交流真实、严格,串联介质在交流试验中场强分布与其介电常数成反比,而施加直流时却与其电导率成反比,因此在直流耐压试验时,一是适当提高试验电压,二是延长外施电压的时间。

       正常的电缆绝缘在直流电压作用下的耐电强度约为400~600kV/cm,比交流作用下约大一倍左右,所以直流试验电压大致为交流试验电压的两倍,试验时间一般选为5~10min。

      一般电缆缺陷在直流耐压试验持续的5min内都能暴露出来,GB50150—91规定了长的持续试验时间为15min。

    (1)电缆的直流击穿强度与电压性有一定关系。试验时一般电缆芯接负,电缆芯接正时,击穿电压比接负时约高10%。

    (2)浸渍纸绝缘电缆的击穿电压与温度关系很大,在温度t℃时的击穿电压U与在25℃时的击穿电压U0有如下关系  U=U0[1-0.0054(t-25)]

    (3)即在25℃以上,每升高1℃击穿电压降低0.54%。

    (4)在进行直流耐压和泄漏电流试验时应均匀升压,升压过程中在0.25、0.5、0.75、1.0倍试验电压下各停留1min,读取泄漏电流值,以便必要时绘制泄漏电流和试验电压的关系曲线。

    (5)进行完电缆直流耐压或泄漏电流试验后,应牢记先用100~200kΩ的限流电阻充分放电,然后还要对地直接放电,并保持足够的接地时间。

2.泄漏电流测量技术

     (1)绝缘良好的电缆泄漏电流很小,一般只有几到几十微安。由于试验变压器用高压引线等杂散电流的影响,当将微安表接入低电位端测量时,往往使测量结果不准,有时误差竟达到真实值的几倍到几十倍。

     (2)在实际测量中应尽量将微安表接在高电位端的接线,这时对测量微安表、引线及电缆两头,应该严格地屏蔽,对于整盘电缆可以采用屏蔽接线方式。这里微安表采用金属屏蔽罩屏蔽,微安表到被试品的引线采用金属屏蔽线屏蔽,对电缆两端头则采用屏蔽帽和屏蔽环屏蔽。屏蔽和引线之间只有很小的电位差,所以并不需要很高的绝缘。

  1—微安表屏蔽罩;2—屏蔽线;3—端头屏蔽帽;4—屏蔽环

     (3)在现场试验时,由于电缆两头相距很远,无法实现连接,所以上述方法是不可行的。有的运行单位采用借用三相电缆中的另一相作为两端屏蔽连线,但由于测量的泄漏电流包含了另一相的泄漏电流,且每相均承受两次耐压,因此采用这种方法的等效性值得研究。

     现场采用两端同时测量的方法,其接线即在非高压电源端增加一个测量微安表,同时记录两端的泄漏电流值。这时高压电源端测得的泄漏电流包含电缆绝缘的泄漏电流和表面泄漏电流、杂散电流,而另一端测量的是表面泄漏电流和杂散电流,从而电缆的泄漏电流为两者的差。

     另一种简便有效的方法是在施加电压相和非施加电压相之间放置一个绝缘板,或将绝缘手套套在施加电压的那一相电缆终端上,以改善局部电场分布,减小电晕的影响。

3.关于交联聚乙烯电缆直流耐压试验的讨论

     交联聚乙烯电缆绝缘直流耐压试验是一个有争议的试验项目,由于交联聚乙烯绝缘性质十分特殊,进行直流耐压试验可能是不适合的。主要观点有:

     (1)直流电压对交联聚乙烯绝缘有积累效应,当经过直流耐压试验后,将在电缆绝缘中残余一定的直流电压,这时将电缆投入使用,大大增加了击穿的可能。

     (2)交联聚乙烯电缆在运行中,在主绝缘交联聚乙烯中逐步形成水树枝、电树枝,这种树枝化老化过程,伴随着整流效应。由于有整流效应的存在,致使在直流耐压试验过程中,在水树枝或电树枝端头积聚的电荷难以消散,并在电缆运行过程中加剧树枝化的过程。

     (3)由于交联聚乙烯XLPE绝缘电阻很高,以致在直流耐压时所注入的电子不易散逸,它引起电缆中原有的电场发生畸变,因而更易被击穿。

     (4)由于直流电压分布与实际运行电压不同,直流试验合格的电缆,投入运行后,在正常工作电压作用下也会发生绝缘故障。

     因而,有的运行单位将交联聚乙烯电缆的直流耐压试验从常规性预防性试验改为鉴定性试验,即当其他预防性试验项目发现问题而又无法判断电缆能否投运时,才进行直流耐压试验。也有建议将直流耐压试验改作交流耐压试验,如采用变频谐振试验装置或超低频交流耐压装置(0.01Hz)进行试验。近年来发展的交联聚乙烯电缆在线检测技术为交联聚乙烯电缆运行检测提供了新的方法。

相关文章